MULTI-DRUG AND EXTENSIVELY-DRUG RESISTANT TUBERCULOSIS IN (M/XDR-TB) KANO STATE NIGERIA: MOLECULAR GENOTYPING APPROACH (LINE PROBE ASSAY)
Abstract
This study of tuberculosis among patients was conducted in Kano State, Nigeria. Our objective is to determine the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) using the Line Probe Assay, a molecular genotyping diagnostic method.
The line probe assay (LPA) was conducted following the manufacturer’s protocol. This DNA strip-based test involves three main steps: DNA extraction, multiplex PCR amplification, and reverse hybridization. Each step was carried out in accordance with WHO guidelines. Among 401 TB patients (ages 18-88, mean 34.96±14.8 years), the 25-34 age group was most represented (35.4%), while only 3% were aged ≤14 years. Males were predominant (71.4% vs. 28.6% females).Most participants were married (58.9%). Hausa made up 98.8%, with small representation from other tribes like Idoma and Yoruba. A majority (94%) had some form of education. Most were self-employed (45.6%) or students (31.2%). Income levels varied, with 34% earning 18,000 - <35,000 Naira monthly. 10.2% of patients were found to have MDR-TB, with rifampicin mono-resistance at 6.5% and isoniazid mono-resistance at 1.5%. The highest prevalence of MDR-TB was seen among ages 25-34 (46.3%) and predominantly in males (80.5%).Two cases of XDR-TB were recorded (0.5%), both among females and largely from the 15-24 and 25-34 age groups. XDR-TB prevalence was also slightly higher among HIV-negative patients. The eight metropolitan LGAs accounted for 75.3% of MDR-TB cases, with Nassarawa and Fagge having the highest incidences. In terms of XDR-TB, only Tarauni LGA reported cases, while others had pre-XDR-TB cases. Individuals with no formal education exhibited higher resistance rates, particularly to MDR-TB. Among those resistant to fluoroquinolones, the most affected age groups were 25-34 and 35-44. No significant difference was observed in drug resistance across income levels. The findings indicate a high prevalence of MDR-TB, especially among younger adults, males, and those with limited education. The study underscores the need for targeted intervention in Kano State, especially in high-prevalence metropolitan LGAs, and highlights the critical need for better diagnostic and preventive measures, particularly for drug-resistant TB in high-risk demographics.
Keywords
Full Text:
PDFReferences
Abubakar, M. Z., Kaya, M., Eriş, M., Abubakar, M. M., Karakuş, S., & Sani, K. J. (2024). Automated Tuberculosis Classification with Chest X-Rays Using Deep Neural Networks -Case Study: Nigerian Public Health. Turkish Journal of Science and Technology, 19(1), 55–64. https://doi.org/10.55525/tjst.1222836
Adamu, A. U., & Hafiz, T. R. (2015). Multi-drug resistant tuberculosis pattern in Kano metropolis, Nigeria. In The Journal of American Science (Vol. 11, Issue 6, pp. 293–296).
Adepoju, V. A., Adelekan, A., Etuk, V., Onoh, M., & Olofinbiyi, B. (2022). How Do Private Providers Unaffiliated With the Nigeria National TB Program Diagnose and Treat Drug-Susceptible TB Patients? A Cross-Sectional Study. Global Health Science and Practice, 10(6), 1–10. https://doi.org/10.9745/GHSP-D-22-00210
Cheng, Q., Xie, L., Wang, L., Lu, M., Li, Q., Wu, Y., Huang, Y., Jia, Q., & Zhao, G. (2021). Incidence Density and Predictors of Multidrug-Resistant Tuberculosis Among Individuals With Previous Tuberculosis History: A 15-Year Retrospective Cohort Study. Frontiers in Public Health, 9(May), 1–14. https://doi.org/10.3389/fpubh.2021.644347
Cheng, S. (2022). Genetic determinants and evolution of drug resistance in Mycobacterium tuberculosis in Cambodia , high tuberculosis burden country To cite this version : HAL Id : tel-03690395 Déterminants génétiques et évolution de la résistance aux antibiotiques chez My. 1–207.
Chimfwembe, K., & Mukuka, B. (2024). A Study to Assess Anti-TB Treatment Compliance , Factors Predictive for Poor Adherence and Perpetual Defaulting among Patient Living with TB in Namuseche Chipata Eastern Province – Zambia. October. https://doi.org/10.38124/ijisrt/IJISRT24OCT005
Divakar, S. (2021). DETERMINATION OF SAMPLE SIZE AND SAMPLING METHODS IN APPLIED RESEARCH. Proceedings on Engineering Sciences, 03(1), 25–32. https://doi.org/10.24874/PES03.01.003
Duan, Q., Chen, Z., Chen, C., Zhang, Z., Lu, Z., Yang, Y., & Zhang, L. (2016). The prevalence of drug-resistant tuberculosis in mainland China: An updated systematic review and meta-analysis. PLoS ONE, 11(2), 1–11. https://doi.org/10.1371/journal.pone.0148041
Ereso, B. M. (2024). Challenges of Tuberculosis Control Program Performance in Jimma Zone , Southwest Ethiopia. In ISBN 978-82-348-0344-4 (pp. 1–290).
Etim, N. G., Mirabeau, Y., Olorode, A., & Nwodo, U. (2024). Risk Factors of Tuberculosis and Strategies for Prevention and Control. Int J Innovative Healthcare Res, 12(1), 1–13.
Fallahi, M. J., Nazemi, M., Zeighami, A., & Shahriarirad, R. (2024). Changes in incidence and clinical features of tuberculosis with regard to the COVID-19 outbreak in Southern Iran. BMC Infectious Diseases, 24(1), 1043. https://doi.org/10.1186/s12879-024-09947-0
Gori, A., Bandera, A., Marchetti, G., Esposti, A. D., Catozzi, L., Nardi, G. P., Gazzola, L., Ferrario, G., Van Embden, J. D. A., Van Soolingen, D., Moroni, M., & Franzetti, F. (2005). Spoligotyping and Mycobacterium tuberculosis. Emerging Infectious Diseases, 11(8), 1242–1248. https://doi.org/10.3201/eid1108.040982
Gu, P., Lu, P., Ding, H., Liu, Q., Ding, X., Chen, Y., & Zhu, L. (2024). Effectiveness, cost, and safety of four regimens recommended by WHO for RR/MDR-TB treatment: a cohort study in Eastern China. Annals of Medicine, 56(1). https://doi.org/10.1080/07853890.2024.2344821
Hirpa, S., Medhin, G., Girma, B., Melese, M., Mekonen, A., Suarez, P., & Ameni, G. (2013). Determinants of multidrug-resistant tuberculosis in patients who underwent first-line treatment in Addis Ababa: A case control study. BMC Public Health, 13(1). https://doi.org/10.1186/1471-2458-13-782
Ijezi, C. (2017). Early impact of the Challenge TB Project on tuberculosis control in Osun state, Nigeria. https://etd.uwc.ac.za/handle/11394/5676
Kalton, G., & Brick, J. M. (2005). Household Sample Surveys in Developing and Transition Countries (Issue 96).
Karnan, A., Jadhav, U., Ghewade, B., Ledwani, A., & Shivashankar, P. (2024). A Comprehensive Review on Long vs. Short Regimens in Multidrug-Resistant Tuberculosis (MDR-TB) Under Programmatic Management of Drug-Resistant Tuberculosis (PMDT). Cureus, 16(1), 1–12. https://doi.org/10.7759/cureus.52706
Kassaw, A., Asferie, W. N., Azmeraw, M., Kefale, D., Kerebih, G., Mekonnen, G. B., Baye, F. D., Zeleke, S., Beletew, B., Kebede, S. D., Aytenew, T. M., Bazezew, L. Y., & Agimas, M. C. (2024). Incidence and predictors of tuberculosis among HIV-infected children after initiation of antiretroviral therapy in Ethiopia: A systematic review and meta-analysis. PLoS ONE, 19(7 July), 1–17. https://doi.org/10.1371/journal.pone.0306651
Kimenye, M. K. (2020). Association Between Delay To Treatment Initiation and Treatment Outcomes Among Rifampicin Resistant Tuberculosis Patients in Selected Sites in Kenya. http://ir.jkuat.ac.ke/handle/123456789/5365
Kostyukova, I., Pasechnik, O., & Mokrousov, I. (2023). Epidemiology and Drug Resistance Patterns of Mycobacterium tuberculosis in High-Burden Area in Western Siberia, Russia. Microorganisms, 11(2). https://doi.org/10.3390/microorganisms11020425
Lv, H., Zhang, X., Zhang, X., Bai, J., You, S., Li, X., Li, S., Wang, Y., Zhang, W., & Xu, Y. (2024). Global prevalence and burden of multidrug-resistant tuberculosis from 1990 to 2019. BMC Infectious Diseases, 24(1), 1–9. https://doi.org/10.1186/s12879-024-09079-5
Migliori, G. B., Loddenkemper, R., Blasi, F., & Raviglione, M. C. (2007). 125 years after Robert Koch’s discovery of the tubercle bacillus: The new XDR-TB threat. Is “science” enough to tackle the epidemic? European Respiratory Journal, 29(3), 423–427. https://doi.org/10.1183/09031936.00001307
Migliori, G. B., Sotgiu, G., D’Ambrosio, L., Centis, R., Lange, C., Bothamley, G., Cirillo, D. M., De Lorenzo, S., Guenther, G., Kliiman, K., Muetterlein, R., Spinu, V., Villar, M., Zellweger, J. P., Sandgren, A., Huitric, E., & Manissero, D. (2012). TB and MDR/XDR-TB in European Union and European Economic Area countries: Managed or mismanaged? European Respiratory Journal, 39(3), 619–625. https://doi.org/10.1183/09031936.00170411
Monday, L., Tillotson, G., & Chopra, T. (2024). Microbiota-Based Live Biotherapeutic Products for Clostridioides Difficile Infection-The Devil is in the Details. Infection and Drug Resistance, 17, 623–639. https://doi.org/10.2147/IDR.S419243
Nasiri, M. J., Dabiri, H., Darban-Sarokhalil, D., Rezadehbashi, M., & Zamani, S. (2014). Prevalence of drug-resistant tuberculosis in Iran: Systematic review and meta-analysis. American Journal of Infection Control, 42(11), 1212–1218. https://doi.org/10.1016/j.ajic.2014.07.017
NATIONAL DRUG-RESISTANT TUBERCULOSIS PREVALENCE SURVEY REPORT NIGERIA. (2012).
Navisha Dookie, Senamile L. Ngema, Rubeshan Perumal, Nikita Naicker, Nesri Padayatchi, K. N. (2022). The Changing Paradigm of Drug-Resistant Tuberculosis. Clinical Microbiology Reviews, 35(4), 1–30.
Ogbo, F. A., Ogeleka, P., Okoro, A., Olusanya, B. O., Olusanya, J., Ifegwu, I. K., Awosemo, A. O., Eastwood, J., & Page, A. (2018). Tuberculosis disease burden and attributable risk factors in Nigeria , 1990 – 2016. 1–11.
Oladimeji, O., Atiba, B. P., Anyiam, F. E., Odugbemi, B. A., Afolaranmi, T., Zoakah, A. I., & Horsburgh, C. R. (2023). Gender and Drug-Resistant Tuberculosis in Nigeria. Tropical Medicine and Infectious Disease, 8(2), 1–11. https://doi.org/10.3390/tropicalmed8020104
Onyedum, C. C., Alobu, I., & Ukwaja, K. N. (2017). Prevalence of drug-resistant tuberculosis in Nigeria: A systematic review and metaanalysis. In PLoS ONE (Vol. 12, Issue 7). https://doi.org/10.1371/journal.pone.0180996
Rathored, J., Sharma, S. K., Banavaliker, J. N., Sreenivas, V., & Srivastava, A. K. (2024). Response to treatment and low serum vitamin D levels in North Indian patients with treatment-naive category I and multi-drug resistant pulmonary tuberculosis. Annals of Medicine, 56(1), 2407066. https://doi.org/10.1080/07853890.2024.2407066
Sa’ad, M., Abba, A. A., Musa, B. O. P., Ahmad, A. E., & Mohammed, M. (2024). Assessment of interleukin 6 (IL-6) as a marker of inflammation among adult patients with pulmonary tuberculosis in Zaria, Nigeria. The Egyptian Journal of Bronchology, 18(1), 4–9. https://doi.org/10.1186/s43168-024-00263-4
Saad, M., Abba, A., Musa, B. O., Ahmad, A., & Muhammad, M. (2023). Neutrophils as a cellular marker of inflammation among adult patients with pulmonary tuberculosis in Zaria, Nigeria. International Journal of Health Sciences (Egypt), 0(0), 0–0. https://doi.org/10.21608/ijhegy.2023.247679.1039
Sagonda, T., Mupfumi, L., Manzou, R., Makamure, B., Tshabalala, M., Gwanzura, L., Mason, P., & Mutetwa, R. (2014). Prevalence of Extensively Drug Resistant Tuberculosis among Archived Multidrug Resistant Tuberculosis Isolates in Zimbabwe. Tuberculosis Research and Treatment, 2014, 1–8. https://doi.org/10.1155/2014/349141
Sanchini, A., Lanni, A., Giannoni, F., & Mustazzolu, A. (2024). Exploring diagnostic methods for drug-resistant tuberculosis: A comprehensive overview. Tuberculosis, 148. https://doi.org/10.1016/j.tube.2024.102522
Sanders, M., Van Deun, A., Ntakirutimana, D., Masabo, J. P., Rukundo, J., Rigouts, L., Fissette, K., & Portaels, F. (2006). Rifampicin mono-resistant Mycobacterium tuberculosis in Bujumbura, Burundi: Results of a drug resistance survey. International Journal of Tuberculosis and Lung Disease, 10(2), 178–183.
Shahida Hussain, Sikander Sultan, Saba Riaz, Hajra Hussain, C. L. (2024). Free Rapid Technology in the Diagnosis of. SZMC, 38(1), 9–15.
Shamsilev T.B, J. M. . (2024). Modern View on the Diagnosis and Treatment of Mild Cognitive Impairment. Behavioral Neurology, 1(1), 6–14. https://doi.org/10.46393/27129675_2024_1_6
Siddiq, S., Sarwer, M. I., & Shahzad, K. A. (2023). Causes, prevalence, and identification of multi-drug resistant (MDR) tuberculosis in patients with different age groups. Biomedical Letters, 9(1). https://doi.org/10.47262/bl/9.1.20230103
Suchindran, S., Brouwer, E. S., & Van Rie, A. (2009). Is HIV infection a risk factor for multi-drug resistant tuberculosis? A systematic review. PLoS ONE, 4(5). https://doi.org/10.1371/journal.pone.0005561
Sulaimon, T. A. (2020). Defining and Assessing the Spectrum of Tuberculosis ( TB ) Disease : Application to Diagnosis and Prognosis by. December.
Syeda Sahra, M. S. B. (2024). Tuberculosis ( TB ). Medscape, 1–59.
Wang, Y., Jing, W., Liu, J., & Liu, M. (2022). Global trends, regional differences and age distribution for the incidence of HIV and tuberculosis co-infection from 1990 to 2019: results from the global burden of disease study 2019. Infectious Diseases, 54(11), 773–783. https://doi.org/10.1080/23744235.2022.2092647
Weldegebreal, S., & Mebrahtu, T. (2017). Anti-tuberculosis drug resistance in Ethiopia: Systematic review. International Journal of Tuberculosis and Lung Disease, 21(1), 18–22. https://doi.org/10.5588/ijtld.16.0286
WHO/IUATLD Global Project on. (2008). ANTI-TUBERCULOSIS DRUG. WHO/HTM/TB/2008.394, 4(4), 394.
World Health Organisation. (2010). Multidrug and extensively drug-resistant TB. The Indian Journal of Tuberculosis, 57(4), 180–191. http://www.ncbi.nlm.nih.gov/pubmed/21141336
World Health Organization. (2019). Global Tuberculosis Reports (1st ed.). WHO. http://www.ghbook.ir/index.php?name=فرهنگ و رسانه های نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4&Itemid=218〈=fa&tmpl=component
World Health Organization (WHO). (2014). 2014 World TBC report - Executive summary. 4.
World Health Organization (WHO). (2017). Guidelines for treatment of drug-susceptible tuberculosis and patient care. In WHO/HTM/TB/2017.05 (Vol. 62, Issue 12).
Zhang, S. X., Wang, J. C., Yang, J., Lv, S., Duan, L., Lu, Y., Tian, L. G., Chen, M. X., Liu, Q., Wei, F. N., Feng, X. Y., Yang, G. B., Li, Y. J., Wang, Y., Hu, X. J., Yang, M., Lu, Z. H., Zhang, S. Y., Li, S. Z., & Zheng, J. X. (2024). Epidemiological features and temporal trends of the co-infection between HIV and tuberculosis, 1990–2021: findings from the Global Burden of Disease Study 2021. Infectious Diseases of Poverty, 13(1), 1–16. https://doi.org/10.1186/s40249-024-01230-3
Refbacks
- There are currently no refbacks.
ISSN: 3026-9474 (Online)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.