PATTERN OF GENE MUTATIONS IN RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS USING THE GENOTYPE MTBDRPLUS ASSAY
Abstract
The rise of multidrug-resistant (MDR) Mycobacterium tuberculosis strains complicates tuberculosis (TB) treatment, necessitating rapid detection methods for drug resistance mutations. This study assessed gene mutation patterns in MDR, isoniazid (INH) monoresistant, and rifampicin (RIF) monoresistant MTB strains using the Genotype MTBDRplus assay, targeting mutations in the rpoB, katG, and inhA genes(Hillemann et al., 2007). Among the RIF-resistant MDR strains, mutations were most frequent at the rpoB WT8 probe (85.4%), followed by WT5 (12.2%), WT4 (9.8%), and WT3 (7.3%). For INH-resistant strains, 68.3% of MDR cases showed mutations due to lack of binding at the katG WT probe, while 73.2% had the S315T1 mutation (MUT1), a major marker for INH resistance. The S531T2 mutation was absent in MDR strains. Additionally, in INH monoresistant strains, 33.3% displayed mutations at the katG WT probe and S315T1 mutation. The inhA gene mutations in MDR strains included WT1 (-15/-16) at 19.5% and C15T (MUT1) at 17.1%. This study confirms the effectiveness of the Genotype MTBDRplus assay in detecting resistance patterns and highlights key mutation frequencies, informing targeted treatment approaches in TB control.
Keywords
Full Text:
PDFReferences
Alberts, R. (2024). Resistance to new tuberculosis drugs. Molecular Biology in the Faculty of Biomedical Sciences at Stellenbosch University, 4(March), 1–167.
Barnard, M., Albert, H., Coetzee, G., O’Brien, R., & Bosman, M. E. (2008). Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. American Journal of Respiratory and Critical Care Medicine, 177(7), 787–792. https://doi.org/10.1164/rccm.200709-1436OC
Charles Ejemezu, R. B. A. (2023). Government Expenditure and Poverty Reduction in Nigeria, 1986-2022: A Disaggregated Approach. African Journal of Stability and Development (AJSD), 15(1&2), 25–56. https://doi.org/10.53982/ajsd.2023.1501_2.02-j
GenoType ® MTBDRplus. (2007). www.hain-lifescience.de/produkte/sicherheitsdaten.html
Hillemann, D., Rüsch-Gerdes, S., & Richter, E. (2007). Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. Journal of Clinical Microbiology, 45(8), 2635–2640. https://doi.org/10.1128/JCM.00521-07
Jamieson, F. B., Guthrie, J. L., Neemuchwala, A., Lastovetska, O., Melano, R. G., & Mehaffy, C. (2014). Profiling of rpoB mutations and MICs for rifampin and rifabutin in mycobacterium tuberculosis. Journal of Clinical Microbiology, 52(6), 2157–2162. https://doi.org/10.1128/JCM.00691-14
Meaza, A., Kebede, A., Yaregal, Z., Dagne, Z., Moga, S., Yenew, B., Diriba, G., Molalign, H., Tadesse, M., Adisse, D., Getahun, M., & Desta, K. (2017). Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infectious Diseases, 17(1), 1–8. https://doi.org/10.1186/s12879-017-2389-6
Mohajeri, P., Sadri, H., Farahani, A., Norozi, B., & Atashi, S. (2015). Frequency of Mutations Associated with Rifampicin Resistance in Mycobacterium tuberculosis Strains Isolated from Patients in West of Iran. Microbial Drug Resistance, 21(3), 315–319. https://doi.org/10.1089/mdr.2014.0075
Molodtsov, V., Scharf, N. T., Stefan, M. A., Garcia, G. A., & Murakami, K. S. (2017). Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. 103(January), 1034–1045. https://doi.org/10.1111/mmi.13606
Nathavitharana, R. R., Cudahy, P. G. T., Schumacher, S. G., Steingart, K. R., Pai, M., & Denkinger, C. M. (2017). Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: A systematic review and meta-analysis. European Respiratory Journal, 49(1). https://doi.org/10.1183/13993003.01075-2016
Oo, A., Ba, O., Oa, A., Ci, A., Abayomi, W., Aa, T., Ay, I., Oa, A., & Bo, A. (2024). Statistical overview on tuberculosis in Nigeria : Epidemiological insights and public health implications. 7(1), 114–119.
Ranjan, K. P., Ranjan, N., & Kumar, N. (2023). Molecular Characterization of katG and inhA Mutations by Genotype MTBDRplus Line Probe Assay To Guide Isoniazid and Ethionamide Use for Drug-Resistant Tuberculosis. Cureus, 15(4), 4–11. https://doi.org/10.7759/cureus.37136
Reta, M. A., Alemnew, B., Abate, B. B., & Fourie, P. B. (2021). Prevalence of drug resistance-conferring mutations associated with isoniazid- and rifampicin-resistant Mycobacterium tuberculosis in Ethiopia: a systematic review and meta-analysis. Journal of Global Antimicrobial Resistance, 26, 207–218. https://doi.org/10.1016/j.jgar.2021.06.009
Rieder, H. L., & International Union against Tuberculosis and Lung Disease. (2007). Priorities for tuberculosis bacteriology services in low-income countries. International Union Against Tuberculosis and Lung Disease.
Tan, Y., Hu, Z., Zhao, Y., Cai, X., Luo, C., Zou, C., & Liu, X. (2012). The beginning of the rpoB gene in addition to the rifampin resistance determination region might be needed for identifying rifampin/rifabutin cross-resistance in multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. Journal of Clinical Microbiology, 50(1), 81–85. https://doi.org/10.1128/JCM.05092-11
USAIDS. (2021). Nigeria Tuberculosis Roadmap Overview , Fiscal Year 2022. USAID: From The American People, 1–4. moz-extension://6f3c1017-19e0-4e39-97e3-5dbd61b5fc92/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.usaid.gov%2Fsites%2Fdefault%2Ffiles%2Fdocuments%2FNigeria_TBRM22_TB_DIAH.pdf
Vecchione, M. B., Eiras, J., Suarez, G. V., Angerami, M. T., Marquez, C., Sued, O., Ben, G., Perez, H. M., Gonzalez, D., Maidana, P., Mesch, V., Quiroga, M. F., & Bruttomesso, A. C. (2018). Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection. Scientific Reports, 8(1), 6692. https://doi.org/10.1038/s41598-018-24771-8
Wang, X., Chen, J., Zeng, Y., Ma, Q., Kong, X., Meng, J., & Lu, S. (2024). Interpretation of the third edition of WHO consolidated guidelines on tuberculosis: module 3: diagnosis: rapid diagnostics for tuberculosis detection. In Chinese Journal of Antituberculosis (Vol. 46, Issue 9). https://doi.org/10.19982/j.issn.1000-6621.20240221
World Health Organization (WHO). (1922). Tuberculosis Handbook. WHO/TB/98.253, 199(5132), 34–35. https://doi.org/10.1016/S0140-6736(01)25586-X
Zaw, M. T., Emran, N. A., & Lin, Z. (2018). Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. Journal of Infection and Public Health, 11(5), 605–610. https://doi.org/10.1016/j.jiph.2018.04.005
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.